

EJERCICIOS SOBRE CAMBIOS DE UNIDADES PARA UTILIZAR EL MÉTODO DE FACTORES DE CONVERSIÓN

Cantidad a cambiar de unidad	Unidades a las que hay que cambiar	Solución	
$216 \; \frac{km}{h}$	$\frac{m}{s}$	$60 \frac{m}{s}$	
$15 \frac{m}{s}$	$\frac{km}{h}$	$54 \frac{km}{h}$	
$2,4\cdot 10^6 \frac{g}{m^2}$	$\frac{hg}{mm^2}$	$0.024 \frac{hg}{mm^2}$	
$0,13 \frac{mC}{cm^3}$	$\frac{kC}{m^3}$	$0.13 \; \frac{kC}{m^3}$	
$4 \cdot 10^{-6} \ \frac{mC}{m \cdot s}$	$\frac{daC}{mm \cdot h}$	$1,44\cdot10^{-9} \frac{daC}{mm\cdot h}$	
$9.8 \; \frac{N}{m^2 \cdot s}$	$\frac{kN}{hm^2 \cdot min}$	$5,88\cdot10^3 \frac{kN}{hm^2\cdot\min}$	
$35 \frac{mF \cdot dC}{W \cdot kV}$	$\frac{\mu F \cdot mC}{kW \cdot MV}$	$3.5 \cdot 10^{12} \frac{\mu F \cdot mC}{kW \cdot MV}$	
$1,2\cdot 10^{-4} \frac{\Omega}{s\cdot m^2\cdot g}$	$\frac{m\Omega}{min \cdot mm^2 \cdot \mu g}$	$7,2\cdot 10^{-12} \frac{m\Omega}{\min \cdot mm^2 \cdot \mu g}$	
$0,25 \frac{Mg \cdot A \cdot \mu C \cdot N \cdot kJ \cdot \Omega}{s \cdot hW \cdot dV \cdot mF \cdot daT \cdot cm^{3}}$	$\frac{kg \cdot daA \cdot C \cdot kN \cdot cJ \cdot m\Omega}{h \cdot W \cdot mV \cdot \mu F \cdot T \cdot m^3}$	$90 \frac{kg \cdot daA \cdot C \cdot kN \cdot cJ \cdot m\Omega}{h \cdot W \cdot mV \cdot \mu F \cdot T \cdot m^3}$	

En potencia	En metros	Símbolo	Nombre
10 ¹⁸	1 000 000 000 000 000 000	E	exa
10 ¹⁵	1 000 000 000 000 000	Р	peta
10 ¹²	1 000 000 000 000	Т	tera
10 ⁹	1 000 000 000	G	giga
10 ⁶	1 000 000	М	mega
10 ³	1 000	k	kilo
10 ²	100	h	hecto
10 ¹	10	da	deca
10 ⁻¹	0,1	d	deci
10 ⁻²	0,01	С	centi
10 ⁻³	0,001	m	mili
10 ⁻⁶	0,000 001	λ	micro
10 ⁻⁹	0,000 000 001	n	nano
10 ⁻¹²	0,000 000 000 001	р	pico
10 ⁻¹⁵	0,000 000 000 000 001	f	femto
10 ⁻¹⁸	0,000 000 000 000 000 001	a	atto